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Doubly anchored nematic polymer brushes: Shear, field effects, and quasipiezoelectricity
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The shear behavior of a doubly anchored brush of liquid-crystalline polymers immersed in a nematic
solvent is investigated. In such a brush the grafted polymers bridge two plates. Remarkably, the Franck
nematic elasticity in this system can dominate the shear modulus. In the presence of a field the system
undergoes a Fréedericksz transition modified by the bridging polymers. In particular: (i) the polymeric
elasticity affects the critical field E_; (ii) the shear modulus vanishes as the field approaches E,; and (iii)
the nematic distortion couples to a shear strain. The system exhibits quasipiezoelectricity, which is non-

linear and is not associated with any inverse effect.

PACS number(s): 64.70.Md, 61.25.Hq, 77.65.Fs

Liquid-crystalline polymers (LCP’s) and their
monomeric counterparts are described by a single contin-
uum theory [1-3], differing only in the magnitude of
their material constants: elastic constants, viscosities,
etc. Yet, the two systems may exhibit qualitatively
different  phenomenology  when interfaces and
confinement play a role. Theoretical studies suggest a
Fréedericksz-like transition may be induced by geometric
confinement of solutions of LCP’s in monomeric nematic
fluids [4]. In marked contrast, an external field is neces-
sary to produce a Fréedericksz transition in a pure
monomeric nematic liquid crystal [1]. In this Rapid
Communication we report the distinctive behavior of
another system incorporating LCP’s. We study nematic
brushes [4] formed by terminally grafted LCP’s, i.e., flat
layers consisting of LCP’s attached to a surface by their
end groups. The polymers involved are main-chain
LCP’s consisting of nematogenic monomers joined by
short, flexible spacer chains. Our primary interest is in
“double” brushes consisting of chains with each end at-
tached to a different surface. The brush considered is
swollen by a monomeric nematic solvent subject to
homeotropic anchoring conditions, i.e., the nematic
director n at the grafting surfaces is perpendicular to the
interface. Our analysis concerns the response of the
nematic “double” brush to shear and to electric fields. A
number of distinctive features emerge. Three regimes
may be distinguished in the shear behavior. Two are due
to the elasticity of the anisotropic LCP’s. The third re-
gime, which is specific to this system, is dominated by the
director elasticity of the nematic solvent. This is a re-
markable feature because monomeric nematics are simple
fluids exhibiting no elastic response to shear, i.e., they
have zero shear modulus. The Franck elasticity of
nematics is due to the distortion of the director and does
not respond to strains. In the double brush the nematic
elasticity couples to the bridging polymers and can dom-
inate the shear modulus. As expected, the application of
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an electric field gives rise to a Fréedericksz transition.
However, this has two exceptional characteristics. First,
in certain regimes the elasticity of the LCP’s replaces the
elasticity of the nematic in controlling the transition.
Second, the transition is associated with shear strain.
Since the shear strain of the grafting surfaces is not ac-
companied by a net polarization, this effect is not
piezoelectric [5,6]. It is also nonlinear in the field
strength and occurs only for fields above a critical field.
We thus refer to it as quasipiezoelectric. While the
response to pure shear is continuous, the Fréedericksz
transition has the features of a second-order phase transi-
tion. As a result the shear modulus vanishes as E2—E?
in the vicinity of the critical field E.. These distinctive
effects are traceable to the coupling between the LCP’s
bridging the two plates and the molecular field due to the
nematic order. As a result the LCP’s assume anisotropic
configurations [7]. Furthermore, these ellipsoidal objects
align with their major axis parallel to n. Because the
LCP’s in our system bridge two mobile surfaces, the
nematic distortion is coupled to the shear strain.

The system considered is of interest from a variety of
perspectives. The behavior of polymer brushes under
shear is a subject of current research in polymer physics
[8]. The shear behavior of double brushes has been in-
voked in the interpretation of experiments performed us-
ing the Israelachvili force measurement apparatus. How-
ever, thus far the discussion has been confined to brushes
consisting of isotropic chains. The analysis of nematic
double brushes reveals qualitatively different features of
interest in the design of the corresponding experiments.
The relationship to lamellar mesogels [9] affords a greater
potential. The double brush is an idealized elementary
unit of a lamellar mesogel formed from ABA triblock
copolymers with a LCP B block. Such mesogels are ob-
tainable as follows: A lamellar phase of 4BA melt is
aligned by shear and then quenched below the glass tran-
sition temperature, T, of the 4 domains. Some of the B
blocks bridge different 4 domains. Accordingly, the re-
sulting structure is a physically cross-linked network.
This thermotropic network is then swollen by a
monomeric nematic solvent yielding a nematic lamellar
mesogel. The distinctive behavior of nematic double
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brushes thus has a macroscopic realization in these sys-
tems. Accordingly, mesogels of this type afford an exper-
imental system enabling the study of these effects. Fur-
thermore, this suggests a possible strategy for the design
of novel composite materials exhibiting mecano-optic and
electromechanical, quasipiezoelectric effects. Finally, the
structural simplicity of the nematic mesogels makes them
useful as model systems for the study of liquid-crystalline
networks in general [10]. Among their special features,
of interest from the perspective of network elasticity, is
the importance of the elasticity of the nematic solvent in
determining the moduli of the nematic gel. From the
liquid-crystals research perspective the interest is in the
polymeric modifications of the Fréedericksz transition; in
particular, the role of polymer elasticity and the coupling
to the shear strain. This last point is remarkable because
electromechanical effects in liquid crystals are usually
due to the coexistence, at the molecular level, of shape
anisotropy and dipole moment [11]. In our system the
effect results from dielectric anisotropy and the coupling
between the bridging chains and director field.

Before we discuss the effects themselves, it is helpful to
summarize the relevant configurational features of main-
chain LCP’s in nematic media [4,12,7]. These reflect the
coupling with the molecular field due to the nematic or-
der. As a result the chain tends to align with n and vice
versa. The configuration of the LCP’s arises from the su-
perposition of two contributions. Firstly, there is weak
undulation due to fluctuations of the trajectory from per-
fect alignment with n. This contribution determines the
chain dimension perpendicular to n, R Ly In a melt state

R, may be rationalized as the result of a two-

dimensional random walk of L /I steps of length
I=kT/a,S where L is the length of the chain, a, is the
coupling constant with the nematic field, and S is the
nematic order parameter. Accordingly Rfole. The

second component is ny hairpin defects [13]. These
abrupt reversals in the trajectory of the chain are entropi-
cally favorable but energetically penalized. The energetic
penalty, due to the unfavorable orientation of the bend
with respect to the nematic field, is U, =~(a,S€)!/? where
€ is the chain rigidity. The equilibrium number of hair-
pins on a LCP of length L is ny=~(L /Dexp(— U, /kT).
The hairpins give rise to a one-dimensional random walk
along the n direction. The average step length is L /n,
and the number of steps is n,. Consequently, the chain
dimension parallel to n is R ﬁo ~L%/ny=~LIl exp(U, /kT).

The involvement of random walks suggests that the elas-
tic response of the LCP’s is Gaussian [14]. However, in
this case the elastic free energies associated with the ex-
tension of R, and of R, are different,
Fy(R))/KT=R{/R}; Fq(R;)/kT~R}/R}. Note
that the alastic response of the system is very anisotropic
because RNo >>R Ly Along the nematic director we have

a weak ‘“trombone” elasticity associated with the dis-
placement of hairpins. Perpendicular to the director we
find a stronger “accordion” elasticity associated with the
thermal undulations. Altogether we may view the LCP’s
as prolate ellipsoids oriented with their major axis paral-
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lel to n. This and the anisotropy of the elastic response of
the two axes are the two features relevant to our discus-
sion.

For simplicity we consider the simplest possible system
exhibiting the essential physics of interest. The brush is
assumed to be swollen by a 6 nematic solvent, i.e., the
LCP’s adopt meltlike configurations. We have in mind
lamellar mesogels for which the hydrodynamic relaxation
is very slow and the sample volume is essentially con-
stant. Since the glassy lamellae are assumed to be per-
fectly rigid, the thickness of the glassy layers remains
constant irrespective of the shear strain. The nematic en-
vironment is described by the standard continuum
theory. To allow for the boundary conditions imposed by
the homeotropic anchoring the distorted state is de-
scribed by 0(z)=Q sin(mz /H), where 6(z) is the angle be-
tween the director and the lamellar normal at height
0<z <H. Qis a variational parameter serving also as an
order parameter. The polymer trajectory locally follows
the director field. However, it is not necessary to know
the precise trajectory of the chain. In the spirit of the
Alexander model [4,15] we utilize an averaged, global
description of the LCP’s. We also follow the ‘“scaling”
prescription and ignore all numerical prefactors. The el-
lipsoid LCP’s are assumed to undergo uniform deforma-
tion. Consequently, their elastic free energy is deter-
mined only by R and R,. In a nematic medium it is also
necessary to allow for the spatial orientation of the ellip-
soids. In the unperturbed layer the LCP’s are oriented
along the lamellar normal because of the homeotropic an-
choring. In a sheared brush or in a distorted medium it is
sufficient to characterize the overall orientation of the po-
lymers by a uniform tilt angle 8. Thus, in a brush subject
to shear strain A/H the orientation of the LCP’s is
specified by (see Fig. 1)

A=Rsinf+R cosd, H=Rcosh, (1)

where 0 is the angle between the major axis of the ellip-
soid and the lamellar normal and H is the thickness of

the layer. To relate the two descriptions we identify 6
with the average 6(z)

=L ["o(z)dz~
b= [ 62)dz~Q . )

The free energy per chain consists of four terms,
F hain=F 4is T Fei(R )+ Fg(R | )+ Fg, the two elastic con-
tributions supplemented by the distortion free energy of
the nematic and the contribution of the electric field E.
The distortion term is

Fu=(2K/2) [ "0 /dz0dz ~(3K /mQ?,

where K is the nematic-elastic constant. The electric

contribution is
Fp=—(3|AelE?/2) [ “sin0 dz

~—Z2|Ae|EXQ*—-10%) .

Here X is the area per chain, E the electric field, and
Ae=¢,—¢, the dielectric anisotropy of the medium. If
Ae>0 (<0) we apply the field parallel (perpendicular) to
the plates, so the field always favors alignment parallel to
the plates. Strictly speaking, one should also allow for
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FIG. 1. A single bridging LCP undergoing shear. (a) The un-
distorted bridging chain in a slit imposing homeotropic anchor-
ing. (b) The geometry before (dotted line) and after (full line)
shear. The chain extension along the nematic director, n, is
R =H /cos0. The shear displacement A consists of two terms:
one is due to chain tilt, H tan6, and the other is due to the “ac-
cordion” expansion of the chain perpendicular to n, R sin6.

the flexoelectric contribution to the free energy density
[1,11], —P-E. Here P, the electric polarization of the
medium due to the nematic distortion, is

P=fnV-n+f,(VXn)Xn

and f| and f, are the flexoelectric coefficients with di-
mensions of electrical potential. In the following we
mostly ignore this effect since the phenomena considered
would occur even when both f and f, vanish. Altogeth-
er,

Fchain/sz(zK/kTH)Qz-{-RJZ./Rio +R'2,/Rﬁ0

—3|Ae|EXQ?—10Y) . 3)
This free energy can be expressed as a function of A,H
and 6 by using Egs. (1) and (2) to obtain R , and R in
these terms. In particular, R, =(A—H tanf)/cosf and
R,=H /cos@. Upon substituting these expressions into
(3) and expanding the result around =0 to fourth order
in  we find

F=(p+p,8)— 20,80+, +p, +p,— 0 g +p 808
=30, 80+ (2py+3p Lo g +2p, 808 . 4)
Here 8=A/H and for convenience we have written the
free energy per unit volume, F=F_ . /H3, where ZH is
the volume per chain. F is expressed in terms of the
moduli contributed by each component in the system

[16]. There are three such moduli, two of them associat-
ed with the polymer, p=kTH/R}X and

w,=kTH /R fOE. The third, u, =K /H?, arises from the

nematic solvent. These moduli are simply related to the
“spring constants” determining F,., v,=2K/H?3,
vy=kT/R{, and v,=kT/R}. The symbol o in (4) is

|A€|E? and is proportional to the electric “Maxwell”
stress [17]. In the absence of a field, minimization of (4)

with respect to 8 leads to 0=8pu, /(u, +p,+p,+8%,)).
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Upon substitution in (4) this leads to F =,u"+;te§2 where
K., the effective modulus, is

Be=p(py + )/ (py +py+py) . 5)

In general, we always have u, >>pu,. Three elastic re-
gimes are now distinguishable. (i) When #>>p, then
Me=~p, and the elastic response is dominated by the
“trombone” elasticity along the director. (i) When
py>>p, >>p, then p,~p, and the nematic elasticity
dominates. (iii) When u, >>u, the perpendicular “accor-
dion” elasticity dominates and u,~py,. Note that the
nematic and parallel moduli add in series, and that the
compound modulus p,+u, adds to the perpendicular
modulus u, in parallel. This implies that the nematic
modulus dominates when it is larger than the parallel
modulus but smaller than the perpendicular modulus.

To gain insight into the attainability of the various re-
gimes we choose H~R , 2=R fo This is roughly the re-

gime expected for equilibrium diblock phases. For our
theory to be valid we require lateral homogeneity, so =
can be no larger than R}. We define N, =N /n,, which

is the number of monomers between hairpins in the
chain. We also set all microscopic lengths to be equal, so
that / =a and the nematic elastic constant is K =k7T /a.
The nematic elasticity dominates when (a) pu, <y, which
implies 1<N}?N~'72, and (b) p,>p, which implies
N>N,. This last inequality is automatically true in a
system with one or more hairpins. It is thus easy to satis-
fy u, >py- The remaining inequality p, <p, depends on
the number of hairpins per chain and hence on the tem-
perature [18]. At high temperatures N, will be small and
p, will be larger than u,. The system is then dominated
by the weaker nematic elasticity. As the temperature is
increased, the number of hairpins increases, the perpen-
dicular elasticity becomes weaker, and eventually dom-
inates the elastic response. Finally it is important to note
that the stress-induced distortion gives rise to an electric
polarization

P= —(E)O/E)z)(fusinze—flcos26,0,(f|| + £, )sinf cosh) .

P can have components parallel and perpendicular to the
plates, but the net, or average polarization (P) is zero.
The net charge created on each plate, the z component of
P, is also zero.

To allow for the effect of an electric field it is necessary
to use the full free energy (4), including Fz. Considering
terms only up to second order in 6 and minimizing over
0, we find 8=6/(1+6?%). Upon substitution into (4) we
obtain F =,u”+p882, where the effective modulus in the
presence of the field is

B AE)=p(p, +p—0og)/(p, tutu—og). (6)

u.(E) specifies the location of the Fréedericksz transition
and the field dependence of the shear modulus. The
Fréedericksz transition occurs when u,=0, ie., at
U, tp=cf. In the absence of polymers the transition
would take place at 0 =pu,. In the presence of polymers
the distortion must also overcome polymer elasticity, and
the transition occurs at a higher field. The polymer elas-
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ticity never dominates the field-driven transition, since, as
argued above, u, >u,. The second important effect is the
E dependence of u,. The electric stress o acts as a neg-
ative modulus. As the undistorted state approaches the
transition the modulus decreases linearly with o, i.e.,
p.~(EX2—E?). The application of a field thus softens the
elasticity of the system. The field-induced displacement
above the transition is also of some interest. To obtain
this it is necessary to minimize the full free energy ex-
pression, (4), with respect to 8 and §. This yields
8~V oy /0%—1. The displacement is thus nonlinear in
the field. In this respect our system differs markedly
from ordinary piezoelectric materials.

In this Rapid Communication we have presented a
brief study of a nematic double brush. This system exhib-
its four interesting and interrelated effects. The first of
these is independent of any field effects, while the remain-
ing three are field dependent. (i) The nematic elasticity
can dominate the shear modulus by coupling to the
bridging polymers. In marked contrast, ordinary nematic
materials show no shear modulus. (i) The modulus of
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the system can be softened by the application of an elec-
tric field. (iii) The system undergoes a Fréedericksz tran-
sition at a field strength which depends on the presence of
bridging polymers. (iv) The material exhibits quasi-
piezoelectricity, in that it shears under application of a
field, but only above a critical field, and then nonlinearly
in the field strength. From the point of view of
monomeric nematics (i) is the most unusual feature. Al-
though monomeric nematics exhibit an elastic response
this “elasticity” is due to distortions of the director field
and is unrelated to the displacement of the fluid mole-
cules. In our case the nematic and the polymer elastici-
ties are coupled to produce a material where the nematic
elastic constants affect the shear modulus. From the per-
spective of materials science our system shows quasi-
piezoelectricity, which is nonlinear and has no inverse
effect.
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